

Technisches Handbuch

myGEKKO & Modbus

Version 1.1 22.01.2019 Softwareversion: ab V4795

Art. Nr. MRK.THB.MOD.0001

Änderungen

Datum	Dok. Version	Bearbeiter	myGEKKO Version	Änderungen
11.07.18	1.0		Ab V4725	Erstellung Handbuch
22.02.19	1.1	Marc Grass	Ab V4795	Hinzufügen der Byte- und Word-Order Überarbeitung Handbuch

Inhaltsverzeichnis

Änderungen	2
1. Allgemeines zu Modbus	4
1.1 Aufbau und Adressierung	5
1.2 Betriebsarten	6
1.2.1 RTU (Remote Terminal Unit)	6
1.2.2 ASCII Modbus	6
1.2.3 TCP Modbus	6
1.3 Modbus Funktionen	7
2. Konfiguration:	8
2.1 Konfiguration am myGEKKO	9
2.1.1 Allgemeine Konfiguration	9
2.1.2 Testing	10
2.1.3 Modbus Block	11
2.1.4 Modbus REG List	12
2.1.5 Modbus REG Multi List	13
2.1.6 Modbus-List	14
2.2 Verwenden der Register am myGEKKO	15
3. Fehlermeldungen	17

1. Allgemeines zu Modbus

Das Modbus-Protokoll ist ein Kommunikationsprotokoll, das auf einer Master/Slave- bzw. Server/Client Architektur basiert. Mittels dieses Protokolls können ein Master (z.B. ein PC oder myGEKKO) und einer oder mehrere Slaves (z.B. Mess- und Regelsysteme, Geräte) verbunden werden. myGEKKO arbeitet ausschließlich als Master und kann nicht als Slave verwendet werden.

Die Datenübertragung des Modbus-Protokolls kann seriell über RS485 bzw. seltener mit RS232 erfolgen oder über Ethernet. Die serielle Datenübertragung verwendet die Modbus Betriebsart RTU oder ASCII. Die Datenübertragung über Ethernet hingegen Modbus TCP.

Im Modbus-Protokoll gibt es 2 verschiedene Register-Adressierungen die "0" oder "1"basierende Adressierung. Bei der 1-basierenden Adressierung wird als erstes Register die "1" angenommen. Im Gegensatz zur 0-basierenden Adressierung die als erstes Register die "0" annimmt. Dadurch kann es zu einem Offset der Register kommen. Die jeweilige Adressierungsart ist in dem Handbuch des jeweiligen Gerätes zu entnehmen. Die 1-basierte Adressierung wird im myGEKKO als Standard verwendet.

Bei der Konfiguration des Modbus ist es essentiell wichtig, sich bereits vorher mit der Funktionsweise des anzubindenden Gerätes auseinander gesetzt zu haben. Das Handbuch des Gerätes sollte immer griffbereit sein, um ein Nachschlagwerk für die Registernummern und Funktionsweisen des Gerätes zu haben.

8-bit MSB	8-bit LSB	8-bit MSB	8-bit LSB							
16-bit	MSW	16-bit	LSW							
32-bit										

Byte-Order

Word-Order

8 bit = 1 Byte 16 bit = 2 Byte

1.1 Aufbau und Adressierung

Jede Modbus-Linie kann nur mit Geräten derselben Betriebsart, Baudrate und Telegramm Konfiguration betrieben werden.

Sollen Geräte mit verschiedenen Betriebsarten, Baudraten oder Telegramm Konfiguration verbunden werden, so müssen entsprechend verschiedene Modbus-Linien verwendet werden d.h. auch verschiedene Schnittstellen/Ports am myGEKKO verwendet werden.

Beim RTU und ASCII Modbus werden die Modbus-Geräte seriell angeschlossen. Jedes Gerät in einer Modbus-Linie muss eine andere Adresse besitzen, dies konfigurieren Sie am jeweiligen Gerät.

Beim TCP Modbus werden die Modbus-Geräte über Ethernet angeschlossen. Dabei ist zu beachten, dass es zu keiner Doppelbelegung der IP-Adressen kommt.

<u>1.2 Betriebsarten</u>

Die Modbus Datenübertragung wird in drei verschiedenen Betriebsarten unterschieden:

- RTU (serielle Schnittstelle)
- ASCII (serielle Schnittstelle)
- TCP (Ethernet)

1.2.1 RTU (Remote Terminal Unit)

In dieser Betriebsart werden die Daten in binärer Form übertragen, dadurch ist ein guter Datendurchsatz möglich. Das Telegramm ist folgendermaßen aufgebaut:

Start	Adresse	Funktion	Daten	CR-Check	Ende
Wartezeit (min. 3,5 Zeichen)	1 Byte	1 Byte	n Byte	2 Byte	Wartezeit (min 3,5 Zeichen)

Der Sendebeginn wird durch eine Sendepause von min 3,5 Zeichen gekennzeichnet. Diese Pause ist abhängig von der eingestellten Baudrate. Das Telegramm muss in einem kontinuierlichen Datenstrom übertragen werden. Kommt er zwischen zwei Zeichen zu einer Sendepause von mehr als 1,5 Zeichen, wird das Telegramm als unvollständig bewertet und verworfen.

1.2.2 ASCII Modbus

Diese Betriebsart unterscheidet sich von dem RTU Modbus in der Übertragungsweise des Telegramms. In dieser Form werden die Daten im ASCII-Code übertragen und ist dadurch direkt für den Menschen lesbar.

Start	Adresse	Funktion	Daten	LR-Check	Ende
1 Zeichen (:)	2 Zeichen	2 Zeichen	n Zeichen	2 Zeichen	2 Zeichen (CRLF)

Der Nachteil des ASCII Modbus ist, dass die Datenübertragung geringer ist, als die des RTU Modbus.

Tritt während der Datenübertragung eine Framepause von >1 s auf, so wird der Frame als fehlerhaft bewertet.

1.2.3 TCP Modbus

Dieser ist sehr ähnlich zum RTU Modbus, verwendet aber TCP/IP Pakete um Daten zu übermitteln.

Transaktionsnummer	Protokollkennzeichen	Zahl der noch folgenden Bytes	Adresse	Funktion	Daten
2 Byte	2 Byte (immer 0x0000)	2 Byte (n+2)	1 Byte	1 Byte	n Byte

1.3 Modbus Funktionen

Funktionscode	Funktionsname	Funktionsbeschreibung
FC01	Read Coil Status	Lesen der Coil Bits (ON/OFF) aus einem
		Register
FC02	Read Input Status	Lesen der Input Bits aus einem Register
FC03	Read Holding Registers	Lesen der analog Output Holding Register
FC04	Read Input Register	Lesen der analog Input Holding Register
FC05*	Force Single Coil	Schreiben der Coil Bits (ON/OFF) in einem
		Register
FC06	Preset Single Register	Schreiben von einem Register
FC15*	Force Multiple Coils	Schreiben von einer Serie von Coils
FC16	Preset Multiple Register	Schreiben von zwei oder mehr Registern

Nicht alle Geräte unterstützen alle Funktionen. Entnehmen Sie dem Handbuch Ihres Gerätes welche Funktionen unterstützt werden.

*Die Funktionen FC05 und FC15 werden vom myGEKKO nicht unterstützt.

2. Konfiguration:

Folgende Einstellungsmöglichkeiten unterstützt myGEKKO:

Modbus:					
RTU/ASCII/TCI	P:				
-	Block				
	Mehrere hintereinander folgende Register (Block) werden aus einem Gerät ausgelesen.				
-	REG List				
	Aus einem Gerät werden mehrere verschiedene Register ausgelesen, die sehr unterschiedliche Registernummern haben.				
-	REG Multi List				
	Aus mehreren verschiedenen Geräten, werden verschiedene Register ausgelesen, die sehr unterschiedliche Registernummern haben.				
Modbus-List (nur seriell): RTU/ASCII:					

Aus mehreren gleichen Geräten werden mehrere hintereinander folgende Register (Block) ausgelesen.

Beschreibung:

RTU/ASCII: Kommunikation über RS485 oder RS232

TCP: Kommunikation über Ethernet, TCP/IP Pakete

Unterschied Modbus Block und Modbus-List:

Diese beiden Modi unterscheiden sich nur durch die Anzahl der Geräte. Bei Modbus Block wird nur ein Gerät angesprochen, wobei bei Modbus-List mehrere gleiche Geräte angesprochen werden.

Unterschied Modbus REG List und REG Multi List:

Die beiden Modi unterscheiden sich nur durch die Anzahl der Geräte. Bei Modbus REG List wird nur ein Gerät angesprochen, wobei bei Modbus REG Multi List mehrere Geräte angesprochen werden können.

2.1 Konfiguration am myGEKKO

2.1.1 Allgemeine Konfiguration

RTU/ASCII:

Geben Sie den Port am myGEKKO des Modbus an. Im Handbuch des Gerätes ist die Baudrate und Telegramm Konfiguration dokumentiert und geben Sie die Daten ein. Stellen Sie Modbus Betriebsart auf "RTU". Sobald eine Verbindung zur Modbus-Linie hergestellt werden konnte, wird der Button der IO-Station grün.

TCP:

Geben Sie als myGEKKO Port "LAN-TCP" an und geben Sie die IP-Adresse des Gerätes/Slave ein. Der Standard Port ist "502", dieser kann jedoch je nach Produkt abweichen. Diese Informationen finden Sie im Handbuch Ihres Gerätes. Sobald eine Verbindung zur Modbus-Linie hergestellt werden konnte, wird der Button der IO-Station grün.

TCP Modbus	my	GEKKO Port	: \					
	my	GEKKO	IO-Konfiguration					
Titel bearb.	Modbus		LAN-TCP	192.168.2.222				
1: IOStation	Slave	1	Port	502 🔶	Port			
2: IOStation	Register	Block	Testing >	·>				
3: IOStation	REG IN Type	FC3-BLOCK	REG OUT Type	FC6				
4: IOStation	REG IN Start		REG OUT Start					
5: IOStation	REG IN Digital	x16	REG OUT Digital	x16				
7: IOStation	REG IN Analog	1	REG OUT Analog	1				
8: IOStation								
Tools	Parame	ter >>						
	<u>~</u>							

2.1.2 Testing

Um die Verbindung zu den jeweiligen Geräten zu testen, klicken Sie auf den Button "Testing". Hier können Sie die Register des jeweiligen Gerätes auslesen und schreiben, dazu lesen Sie im Handbuch des Gerätes die Registernummer und den Funktionscode aus. Versuchen Sie jetzt ein Register auszulesen. Dazu geben Sie die Registernummer im Feld

"Register Dez" oder "Register Hex" ein und wählen Sie im Feld "Kommando" die passende Modbus Funktion aus.

Wird ein Wert ausgegeben und im Log als "OK" markiert so steht die Verbindung zum Gerät.

	Tes	sting
		11.07.2018 13:41:00 Test FC3 Slave: 1 Reg:5 OK
Kommando < idle >		11.07.2018 13:41:06 Test FC3 Slave:1 Reg:6 OK
		11.07.2018 13:41:14 Test FC3 Slave:1 Reg:7 OK
Register Dez	7	11.07.2018 13:39:50 Test FC3 Slave: 1 Reg:103 OK
	0007	11.07.2018 13:40:20 Test FC3 Slave:1 Reg:0 OK
Register Hex	0007	11.07.2018 13:40:28 Test FC3 Slave: 1 Reg: 1 OK
Schreibwert	0	11.07.2018 13:40:34 Test FC3 Slave: 1 Reg:2 OK
Antwort	65535	11.07.2018 13:40:41 Test FC3 Slave:1 Reg:3 OK
		11.07.2018 13:40:47 Test FC3 Slave: 1 Reg:4 OK
		11.07.2018 13:40:53 Test FC3 Slave: 1 Reg:4 OK
		Ok

Soll ein Wert geschrieben werden, muss zunächst im Feld "Schreibwert" der Wert eingegeben werden und das Register angegeben werden. Dann wählen sie die passende Funktion unter "Kommando" aus.

Sollte im Log nicht "OK" erscheinen, können Sie im Kapitel Fehlermeldungen, den Fehlercode nachschauen.

2.1.3 Modbus Block

- 1. Erstellen Sie zunächst eine neue IO Station als Typ "Modbus"
- 2. Folgen Sie den Anweisungen im Kapitel "2.1.1 Allgemeine Konfiguration"
- 3. Wählen Sie im Menü Punkt Register "Block" aus.
- 4. Testen Sie die Verbindung zum Gerät. Dies wird im Kapitel "2.1.2 Testing" beschrieben

Nun können Sie Ihren Block definieren.

myGEKKO IO-Konfiguratio												
Titel bearb.	Modbus		COM-	Port 2	38400							
1: IOStation	Slave	1	RTU 8DB 1S		1SB	PAR.NONE						
2: IOStation	Register	Block		Т	esting ≯	»>						
3: IOStation	REG IN Type	FC4-SINGLE	REG OUT Type			FC6						
4: IOStation	REG IN Start	105	REG OUT Start			105						
5: IOStation	REG IN Digital	x16	REG OUT Digital			x16						
6: IOStation	REG IN Analog		REG OUT Analog		2	1						
7: IOStation												
Tools	Parame	ter >>										
	2.		P		5							

REG IN/OUT Type:

Hier geben Sie die Funktion ein, die im Handbuch des Gerätes definiert ist. Zusätzlich können Sie hier zwischen "FC X -Single" und "FC X – Block" wählen.

Bei "Single" werden alle Register einzeln gelesen/geschrieben und bei "Block" alle als Block.

REG IN/OUT Start:

Hier geben Sie das Start Register des Blockes ein, d.h. ab welchem Register gelesen/geschrieben werden soll. Wird kein Wert angegeben wird der Wert 0 gesetzt. Achten Sie auf die "0" oder "1"basierte Adressierung.

REG IN/OUT Digital:

Diese Felder haben als Modbus Block keine Funktion. Es ist darauf zu achten, dass hier nur x16 steht (also eine 0 eingetragen ist).

REG IN/OUT Analog:

Hier geben Sie an wie viele Register gelesen/geschrieben werden sollen. Die Register beziehen sich jeweils auf 16bit. Es können maximal 512 Analog IN und 512 Analog OUT (16bit) Register verwendet werden. (max. 256 32-bit Register, max. 128 64-bit Register)

2.1.4 Modbus REG List

- 1. Erstellen Sie eine IO-Station als Typ "Modbus".
- 2. Folgen Sie den Anweisungen im Kapitel "2.1.1 Allgemeine Konfiguration"
- 3. Wählen Sie im Menüpunkt Register "REG List" aus
- 4. Testen Sie die Verbindung zum Gerät. Dies wird im Kapitel "2.1.2 Testing" beschrieben

Klicken Sie auf den Button "Register". Dort können Sie nun die Register eintragen die gelesen/geschrieben werden sollen. Bitte entnehmen Sie im Handbuch des jeweiligen Gerätes, welche Funktionen für die jeweiligen Register zur Verfügung stehen. Nicht alle Register können gelesen und/oder beschrieben werden.

Wichtig: Es können maximal 64 16bit Register benutzt werden. Wenn Sie mehr als ein Register (16 Bit) lesen, müssen Sie so viele Zeilen, im REG-List/REG-Multi-List leer gelassen werden, wie Register zusätzlich gebraucht werden (d.h. wenn 32 Bit gelesen werden muss darunter genau eine Zeile leer gelassen werden, bei 64 Bit demnach 3 Zeilen). Achten Sie darauf, dass das Eingabeformat (HEX/Dezimal) ihrer Eingabe entspricht.

2.1.5 Modbus REG Multi List

- 1. Erstellen Sie eine IO-Station als Typ "Modbus".
- 2. Folgen Sie den Anweisungen im Kapitel "2.1.1 Allgemeine Konfiguration"
- 3. Wählen Sie im Menüpunkt Register "REG Multi List" aus
- 4. Testen Sie die Verbindung zum Gerät. Dies wird im Kapitel "2.1.2 Testing" beschrieben
- 5. Klicken Sie auf den Button "Register". Dort können Sie nun die Register eintragen die gelesen/geschrieben werden sollen. Bitte entnehmen Sie im Handbuch des jeweiligen Gerätes, welche Funktionen für die jeweiligen Register zur Verfügung stehen. Nicht alle Register können gelesen und/oder beschrieben werden. Geben Sie zusätzlich die Slave Nummer ein, um den richtigen Slave auszuwählen.

📓 myGekko Viewer - Connected — 🗆 🗙					×			~		vvc	`	I.	Konfiau			
myGEKKO			IO-Konfiguratio	ion	Register >>							5				
Titel bearb.	Modbus		Сом-	Port 2		38400			Reg.Nr.		Shun Poo Mr		Reg.Nr.	Тур	Slave	
1: IOStation			RTU	8DB	1SB	PAR.NONE		1	0001	FC3/FC6 Hold (R/W)	1	9	0000	NC	0	
2: IOStation	Register	REG Multi List		 T	l Festina	>>		2	0005	FC3/FC6 Hold (R/W)		10	0000			i L
3: IOStation		_	<u> </u>	R	egister	>>	- E	3	0000	NC		11	0000	NC		
4: IOStation			<u> </u>		logistor			Ĭ	0000				0000			
5: IOStation								4	0000	NC		12	0000	NC		
6: IOStation							e	5	0000			13	0000			
7: IOStation							7	6	0000			14	0000			
8: IOStation			a				8	7	0000			15	0000			
Tools	Parame	eter >>						8	0000	NC	0	16	0000	NC	0	
					*		Ein	qabeformat HEX	-	Ĵ		Ok		*		

Wichtig: Es können maximal 64 16bit Register benutzt werden. Wenn Sie mehr als ein Register (16 Bit) lesen, müssen Sie so viele Zeilen, im REG-List/REG-Multi-List leer gelassen werden, wie Register zusätzlich gebraucht werden (d.h. wenn 32 Bit gelesen werden muss darunter genau eine Zeile leer gelassen werden, bei 64 Bit demnach 3 Zeilen). Achten Sie darauf, dass das Eingabeformat (HEX/Dezimal) ihrer Eingabe entspricht.

2.1.6 Modbus-List

- 1. Erstellen Sie eine IO-Station als Typ "Modbus-List"
- 2. Folgen Sie den Anweisungen im Kapitel "2.1.1 Allgemeine Konfiguration"
- 3. Geben Sie die Start Adresse und Anzahl der Slaves ein. Achten Sie darauf, dass die Slaves aufeinanderfolgende Adressen haben müssen.

		myGEKKO				IO-Konfiguration	
	Titel bearb.	Modbus-List	COM-Port 2			38400	
	1: IOStation	Slave	1	RTU	8DB	1SB	PAR.NONE
Start Adresse der Slaves/ Clients –	2: IOStation	Slaves	- 6		Т	esting :	>>
	3: IOStation	REG IN Type	FC3-BLOCK	REG OU	Т Туре		FC6
Anzahl der Slaves/ Clients	4: IOStation	REG IN Start		REG OU	T Start		
Maximal 64 Slaves	6: IOStation	REG IN Digital x16		REG OUT Digital			x16
	7: IOStation	REG IN Analog	1	REG OU	T Analog	9	1
	8: IOStation						
	Tools						
		<u>~</u>		P		50	

- 4. Testen Sie die Verbindung zum Gerät. Dies wird im Kapitel "2.1.2 Testing" beschrieben
- 5. Folgen Sie den Anweisungen im Kapitel "2.1.3 Modbus Block" den Punkt 4.

Hinweis: Es können maximal 64 Slaves verwendet werden Die Anzahl der Analog IN und Analog OUT Register beträgt jeweils 512 16bit Register, muss aber durch die Anzahl der Slaves geteilt werden

Beispiel:

Anzahl Geräte (Slaves)	Anzahl Analog IN	Anzahl Analog OUT
1	512	512
10	51	51
20	25	25
32	16	16
64	8	8

2.2 Verwenden der Register am myGEKKO

Im REG-List und REG-Multi-List ist die Reihenfolge der eingetragenen Register wichtig. Wenn Sie am myGEKKO auf die Register zugreifen wollen, ist die Position in der Liste ausschlaggebend. D.h. wenn Sie das Register 5 auf Position "2", in der REG-List/ REG-Multi-List konfiguriert haben, müssen Sie, um auf das Register auf dem myGEKKO zugreifen zu können, den AI "2" auswählen.

myGEKKO Registernummer					my	GEKKO	Regi	ster	numn	ner				
	/ Slav	ve Registernu	inner	er			STATION	AI	Ļ		TYPE		VALUE	
1	Reg.Nr.	EC3/EC6 Hold (RMA	9	Reg.Nr.	Тур		1:MODBUS		1		REG1	6	NAT	
			10								BIT		C.1/10	C.1x10
2		PC3/PC6 Hold (H/W)	10		NC			1	2		2BIT		C.1/10	C.1x100
3		NC	11		NC			3	4		4BIT		S-NAT	
4		NC	12		NC			5	6		LBY		S-C.1/1	0 S-C.1x10
5		NC	13		NC			7	8		HBY		S-C.1/1	05-C.1x100
6		NC	14		NC			9	0		REG3	2		
7		NC	15		NC						REG6	4		
8		NC	16		NC									
	Fine	abeformat					MEMORY		2		2	F	Sec.	Ok
	D	EZIMAL			Ok									

Bei Modbus-List und Modbus /Block wird die erste Adresse des Blockes als myGEKKO Registernummer "1" angegeben. Die darauffolgenden Register sind fortlaufend nummeriert.

Die Register können in verschieden weisen ausgelesen werde, dazu stehen Ihnen unter dem Punkt "TYPE" folgende Typen zur Auswahl:

REG16:	Es wird ein Register (16 Bit) ausgelesen.	
BIT:	Es wird ein Bit aus dem Register ausgelesen.	
2BIT	Es werden zwei Bit aus dem Register ausgelesen.	
4BIT	Es werden vier Bit aus dem Register ausgelesen.	
LBY	Es werden die niederwertigsten 8 Bit ausgelesen.	
НВҮ	Es werden die höherwertigsten 8 Bit ausgelesen.	
REG32	Es werden zwei Register (32 Bit) ausgelesen.	
REG64	Es werden vier Register (64 Bit) ausgelesen.	

Achtung: Wenn Sie 32 Bit auslesen, ist die nächste myGEKKO Registeradresse nicht verfügbar. Ebenso sind bei 64 Bit die drei darauffolgen myGEKKO Registeradressen nicht verfügbar. Sie haben zusätzlich die Möglichkeit, im Bereich Value den Registerwert anzupassen:

NAT	Der Registerwert ist eine natürliche Zahl.
C.1/10	Der Registerwert ist eine natürliche Zahl und wird mit 1/10 skaliert.
C.1/100	Der Registerwert ist eine natürliche Zahl und wird mit 1/100 skaliert.
C.1x10	Der Registerwert ist eine natürliche Zahl und wird mit 10 skaliert.
C.1x100	Der Registerwert ist eine natürliche Zahl und wird mit 100 skaliert.
S-NAT	Der Registerwert ist eine ganze Zahl.
S-C.1/10	Der Registerwert ist eine ganze Zahl und wird mit 1/10 skaliert.
S-C.1/100	Der Registerwert ist eine ganze Zahl und wird mit 1/100 skaliert.
S-C.1x10	Der Registerwert ist eine ganze Zahl und wird mit 10 skaliert.
S-C.1x100	Der Registerwert ist eine ganze Zahl und wird mit 100 skaliert.

Wichtig: Um mit den Modbus Registern vernünftig arbeiten zu können benötigen Sie gute Kenntnisse, des zu integrierenden Gerätes. Lesen Sie sich dazu im Handbuch ein, um ein Verständnis zu bekommen, welche Register welche Auswirkungen auf das Gerät haben und wie diese verknüpft sind.

Hinweis:	
Natürliche Zahl:	alle positiven ganzen Zahlen (1,2,3,4,5)
Ganze Zahl:	alle positiven und negativen Zahlen (-3,-2,-1,0,1,2,3)

3. Fehlermeldungen

Sämtliche unten genannten Fehlermeldungen erscheinen als gewohntes Alarmpopup am myGEKKO und werden in der Alarmhistory geloggt.

Fehlercode	Name	Bedeutung
01	Illegal Function	Die ausgeführte Funktion ist nicht implementiert am Slave. Dies kann auch hindeuten, dass sich der Slave im falschen Modus befindet, um diese Funktion auszuführen (z.B. der Slave ist nicht konfiguriert).
02	Illegal Data Address	Die Adresse ist im Slave nicht implementiert.
03	Illegal Data Value	Die Daten sind für dieses Register nicht erlaubt.
04	Slave Device Failure	Ein Fehler ist im Slave während des Ausführens der Aktion aufgetreten
05	Acknowledge	Der Slave hat die Anfrage angenommen und bearbeitet sie. Dies kann länger dauern. Diese Antwort wird gesendet um ein Timeout Error zu umgehen.
06	Slave Device Busy	Der Slave ist dabei einen längeren Befehl abzuarbeiten. Der Master soll die Nachricht später nochmal senden.
07	Negative Acknowledge	Der Slave konnte die Funktion nicht ausführen
08	Memory Party Error	Der Slave soll einen Speicher auslesen, aber es wurde ein Fehler im Speicher festgestellt
10	Gateway Path Unavaible	Das Gateway konnte keine Verbindung zwischen Input Port und Output Port herstellen.
11	Gateway Target Device Failed to Respond	Das Ziel Gerät hat nicht geantwortet
	Time Out	Die Kommunikation zum Gerät ist fehlgeschlagen

Hier finden Sie die Liste der Fehlermeldungen, die beim Testing auftreten können.

A first class product of Europe!

The result of a close collaboration between Italy, Switzerland and Germany